Quasi-free Resolutions of Hilbert Modules
نویسنده
چکیده
The notion of a quasi-free Hilbert module over a function algebra A consisting of holomorphic functions on a bounded domain Ω in complex m space is introduced. It is shown that quasi-free Hilbert modules correspond to the completion of the direct sum of a certain number of copies of the algebra A. A Hilbert module is said to be weakly regular (respectively, regular) if there exists a module map from a quasi-free module with dense range (respectively, onto). A Hilbert module M is said to be compactly supported if there exists a constant β satisfying ‖φf‖ ≤ β‖φ‖X‖f‖ for some compact subset X of Ω and φ in A, f in M. It is shown that if a Hilbert module is compactly supported then it is weakly regular. The paper identifies several other classes of Hilbert modules which are weakly regular. In addition, this result is extended to yield topologically exact resolutions of such modules by quasi-free ones.
منابع مشابه
On quasi-free Hilbert modules
In this note we settle some technical questions concerning finite rank quasi-free Hilbert modules and develop some useful machinery. In particular, we provide a method for determining when two such modules are unitarily equivalent. Along the way we obtain representations for module maps and study how to determine the underlying holomorphic structure on such modules.
متن کاملFrames in super Hilbert modules
In this paper, we define super Hilbert module and investigate frames in this space. Super Hilbert modules are generalization of super Hilbert spaces in Hilbert C*-module setting. Also, we define frames in a super Hilbert module and characterize them by using of the concept of g-frames in a Hilbert C*-module. Finally, disjoint frames in Hilbert C*-modules are introduced and investigated.
متن کاملResolutions and Hilbert Series of the Unitary Highest Weight Modules of the Exceptional Groups
We give a sufficient criterion on a highest weight module of a semisimple Lie algebra to admit a resolution in terms of sums of modules induced from a parabolic subalgebra. In particular, we show that all unitary highest weight modules admit such a resolution. As an application of our results we compute (minimal) resolutions and explicit formulas for the Hilbert series of the unitary highest we...
متن کامل$ast$-K-g-Frames in Hilbert $mathcal{A}$-modules
In this paper, we introduce the concepts of $ast$-K-g-Frames in Hilbert $mathcal{A}$-modules and we establish some results.
متن کاملG-frames in Hilbert Modules Over Pro-C*-algebras
G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...
متن کامل